The Double Salts $Me^+Br \cdot Me^{2+}Br_2 \cdot 6H_2O$ ($Me^+ = K$, NH_4 , Rb; $Me^{2+} = Co$, Ni)

St. Tepavitcharova, J. Macicek*, Chr. Balarew, Chr. Tzvetkova, and Ol. Angelova*

Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria; and *Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria

Received March 25, 1996; in revised form October 16, 1996; accepted October 31, 1996

The ability of the Co²⁺ and Ni²⁺ ions to form double salts of the carnallite formula type $(Me^+X \cdot Me^{2+}X_2 \cdot 6H_2O)$ in aqueoushalide solutions is established. Two new double salts, KBr · NiBr₂ · 6H₂O (PDF 45-196) and RbBr · CoBr₂ · 6H₂O (PDF 45-198), are found in the KBr-NiBr₂-H₂O and RbBr-CoBr₂-H₂O systems, respectively. The structure of $NH_4Br \cdot NiBr_2 \cdot 6H_2O$ (1) (PDF 45-193), to which the salts are isopointal, was determined by single crystal X-ray diffraction: monoclinic crystal system, space group C2/c, a = 9.574(2) Å, c = 13.668(2) Å, $\beta = 90.10(2)^{\circ},$ b = 9.756(2) Å, V =1276.6(5) Å³, Z = 4, Dx = 2.208, F.W. = 424.56, R = 0.050, WR = 0.054 for 743 reflections with $I > 2\sigma(I)$. The compounds have a distorted perovskite type structure by analogy with the monoclinic magnesium carnallites. The crystallization of the double salts $Me^+X \cdot Me^{2+}X_2 \cdot 6H_2O$ from aqueous-halide solutions is connected with the cations' ability to form the complexes $[Me^{2+}(H_2O)_6]$ and $[Me^+X_6]$. Geometric and metal-ligand interaction factors that affect the formation of these complexes are discussed. The "hard-soft" acid/base factor is used as a measure for metal-ligand interaction. The geometrical tolerance factor t of all possible $Me^+X \cdot Me^{2+}X_2 \cdot 6H_2O$ ($Me^{2+} = Ni$, Co) double salts is calculated. © 1997 Academic Press

INTRODUCTION

Only reports of magnesium double salts of the carnallite formula type $Me^+X \cdot Me^{2+}X_2 \cdot 6H_2O$ (1:1:6), where $Me^{2+} = Mg$; $Me^+ = Li(H_2O)$, K, NH₄, Rb, Cs; $X^- = Cl$, Br, I, can be found in the literature. The sole exceptions are NH₄Br \cdot FeBr₂ $\cdot 6H_2O$ (2) and the recently reported NH₄Br \cdot NiBr₂ $\cdot 6H_2O$ (1) double salts. The magnesium carnallite type double salts have been investigated in detail. Fluorocarnallites and sodium carnallites do not exist. Almost all $Me^+X \cdot MgX_2 \cdot 6H_2O$ have similar perovskite type structures and crystallize in the monoclinic crystal system, space group C2/c (3–5). It has been claimed that NH₄Cl \cdot MgCl₂ $\cdot 6H_2O$ (6), RbCl \cdot MgCl₂ $\cdot 6H_2O$ (7), and CsCl \cdot MgCl₂ $\cdot 6H_2O$ (8) belong to the triclinic crystal system, space group P1, but Marsh (9) showed that the centrosymmetric monoclinic structures are correct. Potassium chlorocarnallite alone crystallizes in the orthorhombic crystal system, space group *Pnna* (10, 11).

The purpose of this paper is to report a study of the systems $KBr-NiBr_2-H_2O$ and $RbBr-CoBr_2-H_2O$ and rationalize the existence and the crystal structure type of the obtained $KBr \cdot NiBr_2 \cdot 6H_2O$ and $RbBr \cdot CoBr_2 \cdot 6H_2O$ double salts. Unit cell parameters of the double salts reported herein were measured on a single crystal X-ray diffractometer and used to index the powder patterns (KBr · NiBr_2 \cdot 6H_2O PDF 45-196, RbBr · CoBr_2 \cdot 6H_2O PDF 45-198, NH_4Br · NiBr_2 \cdot 6H_2O PDF 45-193, (12)). The detailed structure of NH_4Br · NiBr_2 \cdot 6H_2O was determined.

EXPERIMENTAL

Chemical Synthesis and Analyses

The KBr-NiBr₂-H₂O and RbBr-CoBr₂-H₂O systems were studied at 25°C by the method of isothermal decrease of supersaturation (13). Equilibrium was attained by continuous stirring for 24 h. Merck reagents (A.R.) were used. The compositions of the liquid and the corresponding wet solid phases were analyzed by titrimetric (complexometric for Co^{2+} and Ni^{2+} ions (14) and argentometric methods (Mohr's method) for the total amount of Br^{-1} ions (15)). The error in the volumetric analyses used was about 0.1-0.2%. The Me^+Br content was calculated from the difference between the total amount of bromides and the bromides corresponding to the Me^{2+} ions. The crystal water content in the double salts was established by gravimetric and TG analyses. The compositions of the thoroughly suction-dried solid phases were determined graphically by the Schreinemakers' method (16).

X-ray Analysis

The unit cell parameters of the double salts $KBr \cdot NiBr_2 \cdot 6H_2O$ and $RbBr \cdot CoBr_2 \cdot 6H_2O$ were determined on an Enraf–Nonius CAD-4 single-crystal diffractometer.

Intensity data for $NH_4Br \cdot NiBr_2 \cdot 6H_2O$ were collected on the same equipment. Crystal data and experimental details obtained using the Patterson method are summerized in Table 1.

RESULTS

The KBr–NiBr₂– H_2O System at 25°C

The results are presented in Fig. 1 and Table 2. A field of crystallization for the $KBr \cdot NiBr_2 \cdot 6H_2O$ double salt has been established.

The RbBr–CoBr₂– H_2O System at $25^{\circ}C$

The results (see Fig. 2 and Table 3) are analogous to those of the previous system and $RbBr \cdot CoBr_2 \cdot 6H_2O$ double salt

TABLE 1	
Crystal Data and Experimental Details for	,
$NH_4Br \cdot NiBr_2 \cdot 6H_2O$	

Chemical formula	Br ₃ NiO ₆ NH ₁₆
Colour	Green
Formula weight	424.56
Crystal system	Monoclinic
Space group	C2/c (15)
a, Å	9.574(2)
b, Å	9.756(2)
<i>c</i> , Å	13.668(2)
β , °	90.10(2)
$V, Å^3$	1276.6(5)
Ζ	4
Temperature, K	292
Crystal size, mm	$0.26 \times 0.16 \times 0.13$
Density _{cale} , $g \cdot cm^{-3}$	2.208
μ , cm ⁻¹	10.82
Absorption correction type	spherical
Absorption correction,	-
T_{\min}/T_{\max}	0.213/0.235
Radiation	$MoK\alpha$ (graphite monochromator)
λ	0.71073
Scan mode	$\omega/2 heta$
Total no. reflections	3985
No. equivalent reflections	1864
R _{int}	0.046
heta limits, °	0-30 (h = 0-9; k = -19-19; l = -9-9)
Standards: no./interval,	
min/decay, %	3/120/1.6
No. observed reflections	743
Observed criterion	$I > 2 \cdot \sigma(I)$
Structure solution	Patterson method
Refinement	on F
Weighting scheme	$1/[\sigma^2(F) + (0.030.F)^2]$
Hydrogen treatment	located and refined with fixed $U = 0.05 \text{ Å}^2$
Extinction expression	$F_{\rm c}^{\rm corr} = F_{\rm c}/(1+gF_{\rm c})$
Extinction coefficient	$16.972 \cdot 10^{-7}$
R	0.050
wR	0.054
Goodness of fit	1.086
Δ/ ho	0.262
$\Delta ho_{ m max}$	0.825

FIG. 1. Solubility diagram of the KBr–NiBr₂–H₂O system at 25°C (in mass %).

has been established. The compositions of both the previously unreported double salts were confirmed by chemical, X-ray and TG-analyses.

Crystal Data of the $Me^+X \cdot Me^{2+}X_2 \cdot 6H_2O$ *Double Salts*

The crystal data of the new double salts $KBr \cdot NiBr_2 \cdot 6H_2O$ and $RbBr \cdot CoBr_2 \cdot 6H_2O$ and the previously reported $NH_4Br \cdot NiBr_2 \cdot 6H_2O$ double salt (1) are shown in Table 4. New measurements on single crystals of the

 TABLE 2

 Solubility in the KBr–NiBr2–H2O System at 25°C

Liquid pl (mass %)	nase	Wet solid phase (mass %)		Solid phase
KBr	NiBr ₂	KBr	NiBr ₂	-
40.6	0.00	_	_	KBr
30.0	10.4	95.7	0.73	KBr
24.8	15.4	88.1	2.67	KBr
19.0	22.2	87.9	3.33	KBr
8.20	38.7	91.0	3.82	KBr
5.94	46.8	69.1	15.1	KBr
6.02	47.3	26.3	42.2	eutonic
5.03	48.5	22.0	49.1	$KBr \cdot NiBr_2 \cdot 6H_2O$
2.05	52.7	22.2	50.1	$KBr \cdot NiBr_2 \cdot 6H_2O$
2.49	55.3	22.3	50.4	$KBr \cdot NiBr_2 \cdot 6H_2O$
2.36	55.9	1.96	62.5	eutonic
0.00	58.8	—	—	$NiBr_2 \cdot 6H_2O$

FIG. 2. Solubility diagram of the RbBr–CoBr₂–H₂O system at 25°C (in mass %).

 $NH_4Br \cdot NiBr_2 \cdot 6H_2O$ double salt were carried out¹ and the results (see Table 4) show that the three salts are isostructural and crystallize with a prismatic habit in a monoclinic crystal system, space group C2/c. Atomic coordinates of the ammonium salt are given in Table 5 and selected geometric data are summarized in Table 6. The atom numbering scheme is shown on Fig. 3. The structure of $NH_4Br \cdot NiBr_2 \cdot 6H_2O$ is a pseudo-perovskite type and is built up of a 3D framework of corner-sharing $[NH_4Br_6]$ octahedra and isolated $[Ni(H_2O)_6]^{2+}$ octahedra within the holes as shown on Fig. 3. The NH_4^+ cation is surrounded by

¹ Details of the X-ray analysis are deposited in the CIF format.

 TABLE 3

 Solubility in the RbBr–CoBr₂–H₂O System at 25°C

Liquid phase (mass %)		Wet solid phase (mass %)		Solid phase	
RbBr	CoBr ₂	RbBr	CoBr ₂		
53.4	0.00		_	RbBr	
42.2	11.6	89.2	2.19	RbBr	
18.1	39.3	79.9	11.7	eutonic	
18.2	39.2	52.0	26.7	eutonic	
16.0	40.7	26.9	42.9	$RbBr \cdot CoBr_2 \cdot 6H_2O$	
11.8	43.8	27.3	44.2	$RbBr \cdot CoBr_2 \cdot 6H_2O$	
7.26	49.3	27.8	45.9	$RbBr \cdot CoBr_2 \cdot 6H_2O$	
5.89	51.5	5.15	58.0	eutonic	
4.74	52.7	1.47	62.2	$CoBr_2 \cdot 6H_2O$	
0.00	54.8		_	$CoBr_2 \cdot 6H_2O$	

TABLE 4Crystal Data of the $Me^+X \cdot Me^{2+}X_2 \cdot 6H_2O$ Double Salts

Parameter	$KBr \cdot NiBr_2 \cdot 6H_2O$	$NH_4Br \cdot NiBr_2 \cdot 6H_2O$	$RbBr \cdot CoBr_2 \cdot 6H_2O$
a, Å	9.509(3)	9.574(2)	9.616(3)
b, Å	9.693(2)	9.756(2)	9.832(5)
c, Å	13.579(3)	13.668(2)	13.743(2)
β, °	90.06(2)	90.10(2)	90.09(2)
Z	4	4	4
V, Å ³	1251.7(8)	1276.6(5)	1299.3(8)
D_X	2.365	2.208	2.516
Space			
group	C2/c	C2/c	C2/c

six Br⁻ anions at distances varying between 3.397(7) and 3.439(7) Å. Each Br⁻ anion is surrounded by two NH₄⁺ cations and four water molecules from the four $[Ni(H_2O)_6]^{2+}$ octahedra. The $[Ni(H_2O)_6]^{2+}$ octahedron is regular with Ni–O distances varying between 2.034(5) and 2.046(5) Å in close agreement with those in the Me^+ Cl·MgCl₂·6H₂O double salts ($Me^+ = K$ (11); Rb (9); Cs (8)). Each water molecule is H-bonded to two Br⁻ ions. The Br \cdots O H-bonding distances, varying between 3.308(5) and 3.357(5) Å, are a little shorter than the Br \cdots N distances. The average Br \cdots O \cdots Br angle is 93.5(2)° and the Ni–O \cdots Br angles are 123.1(2)° and 129.4(2)° respectively.

Calculation of the $[Ni(H_2O)_6]^{2+}$ and $[Co(H_2O]_6]^{2+}$ Ionic Radii

Emons *et al.* (3) and Waisumi *et al.* (8) determined the ionic radius of $[Mg(H_2O)_6]^{2+}$ to be 2.90 Å by two different methods based (i) on the crystal parameters of the double

 TABLE 5

 Positional and Equivalent Isotropic Displacement Parameters

 (Å) of the NH4Br · NiBr2 · 6H2O Double Salt

Label	x	у	Ζ	$U_{ m iso/eq}$
Br1	0.24657(9)	0.25890(6)	0.25257(7)	0.0402(2)
Br2	0.00000	0.00000	0.00000	0.0421(3)
Ni	0.50000	0.00000	050000	0.0217(3)
01	0.4312(6)	0.0102(5)	0.3591(3)	0.041(2)
O2	0.6731(5)	0.1105(6)	0.4616(4)	0.040(1)
O3	0.3991(6)	0.1785(5)	0.5300(5)	0.051(2)
Ν	0.00000	0.003(1)	0.25000	0.053(3)
H11	0.370(7)	0.073(9)	0.356(5)	0.051
H12	0.400(8)	-0.043(8)	0.354(6)	0.051
H21	0.332(8)	0.103(9)	0.081(6)	0.051
H22	0.226(8)	0.075(9)	0.018(6)	0.051
H31	0.141(8)	0.310(9)	0.448(7)	0.051
H32	0.064(8)	0.263(9)	0.496(7)	0.051
HN1	0.082(8)	-0.010(8)	0.239(6)	0.051
HN2	- 0.010(9)	- 0.000(7)	0.293(5)	0.051

 TABLE 6

 Selected Interatomic Distances (Å) and Hydrogen Bond

 Geometry (Å, °) of the NH4Br·NiBr2·6H2O Double Salt

Ni–O1	2.037(5)		Br1-O3 ^{iv}	3.3	3414(9)
Ni-O1 ⁱ	2.037(5)		Br1–N	3.4	439(7)
Ni–O2	2.046(5)		Br1-N ^v	3.3	397(7)
Ni-O2 ⁱ	2.046(5)		Br2–O2 ⁱⁱⁱ	3.3	351(5)
Ni-O3	2.034(5)		Br2-O2vi	3.3	351(5)
Ni–O3 ⁱ	2.034(5)		Br2-O3vii	3.3	308(5)
Br1–O1	3.335(5)		Br2–O3viii	3.3	308(5)
Br1-O1 ⁱⁱ	3.350(5)		Br2–N	3.4	41709(8)
Br1-O2 ⁱⁱⁱ	3.357(5)		Br2-N ^{ix}	3.4	41709(8)
$D–H\cdots A$	D–H	$H \cdots A$	$\mathbf{D}\cdots\mathbf{A}$	$D – H \cdots A$	$A \cdots H \cdots A$
O1–H11 ··· Br1	0.85(8)	2.58(8)	3.335(5)	148(6)	
$O1 – H12 \cdots Br1^{vii}$	0.60(8)	2.80(8)	3.350(5)	154(9)	
O2–H21 ···· Br1 ⁱⁱⁱ	0.59(8)	2.91(8)	3.357(5)	135(9)	
$O2-H22\cdots Br2^{iii}$	1.06(8)	2.30(8)	3.351(5)	171(6)	
O3–H31 ···· Br1 ^{iv}	0.50(8)	2.90(9)	3.341(5)	150(11)	
$O3-H32\cdots Br2^{ii}$	0.76(9)	2.64(9)	3.308(5)	148(8)	
N–HN1 ··· Br1	0.81(7)	3.06(8)	3.439(7)	111(6)	113(2)
N–HN1 ··· Br1 ^{vii}		2.79(8)	3.397(7)	133(7)	
$N-HN2\cdots Br2^{x}$	0.60(7)	2.83(7)	3.417(7)	168(10)	

Note. Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1/2 - x, 1/2 + y, 1/2 - z; (iii) 1 - x, y, 1/2 - z; (iv) 1/2 - x, 1/2 - y, 1 - z; (v) 1/2 + x, 1/2 + y, z; (vi) x - 1, -y, z - 1/2; (vii) 1/2 - x, -1/2 + y, 1/2 - z; (viii) -1/2 + x, 1/2 - y, -1/2 + z; (ix) -x, -y, -z; (x) -x, y, 1/2 - z.

salt (3) and (ii) on the structural data of an ideal perovskite structure with t = 1 (Eq. 2). Waisumi *et al.* (8) selected the RbCl·MgCl₂·6H₂O structure in which the distance Rb–Cl is very close to the sum of the ionic radii r_{Rb^+} and r_{Cl^-} .

Radii of the hydrated metal ions $r_{[Ni(H_2O)_6]^{2+}} \approx 2.86$ Å and $r_{[Co(H_2O)_6]^{2+}} \approx 2.90$ Å) in the double salts were calculated by

FIG. 3. A view of the pseudo-perovskite arrangement of the $[NH_4Br_6]$ (large octahedra) and $[Ni(H_2O)_6]$ (small octahedra) structural units. 30% probably thermal ellipsoids. H atoms are arbitrarily reduced.

the method of Emons et al. (3) by the formula

$$r_{\rm A} = (\sqrt[3]{V_{\rm T}}/\sqrt{2}) - r_X,$$
 [1]

where r_A is the radius of the hexaaquacomplex $[Me(H_2O)_6]^{2+}$, r_X is the radius of the halide ion, and V_T is the volume of the perovskite subcell obtained from the unit cell parameters of the double salt.

Tolerance Factor **t** for the $Me^+X \cdot NiX_2 \cdot 6H_2O$ and $Me^+X \cdot CoX_2 \cdot 6H_2O$ Double Salt Structures

The geometrical tolerance factors **t** for the crystal structures of the double salts $Me^+X \cdot NiX_2 \cdot 6H_2O$ and $Me^+X \cdot CoX_2 \cdot 6H_2O$ (Table 7) were calculated according to Goldschmidt's formula (17),

$$r_{\rm A} + r_{\rm X} = t\sqrt{2}(r_{\rm B} + r_{\rm X}),$$
 [2]

by assuming the $MeX \cdot MeX_2 \cdot 6H_2O$ salts to be distorted ABX_3 perovskites (3) where $r_A = r_{[Me(H_2O)_6]^{2^+}}$; $r_B = r_{Me^+}$, and r_X is the radius of the halide ion.

DISCUSSION

We find that all the double salts $KBr \cdot NiBr_2 \cdot 6H_2O$, $RbBr \cdot CoBr_2 \cdot 6H_2O$, and $NH_4Br \cdot NiBr_2 \cdot 6H_2O$ crystallize with monoclinic symmetry, space group C2/c, and have a distorted pseudo-perovskite type structure by analogy with the monoclinic magnesium carnallites Me^+X · $MgX_2 \cdot 6H_2O$. Their crystal structures (Fig. 3) consist of networks formed by $[Me^+X_6]$ octahedra connected by common corners as well as of isolated $[Me^{2+}(H_2O)_6]$ octahedra situated in the network holes.

The formation of this structure of the $Me^+X \cdot Me^{2+}X_2 \cdot$ 6H₂O salts requires (i) a hexahalide coordination environment of the Me^+ ions, $[Me^+X_6]$, (ii) a hexaaqua coordination environment of the Me^{2+} ions, $[Me^{2+}(H_2O)_6]$, and (iii) appropriate stacking of these coordination polyhedra. A geometric factor and the metal-ligand interactions affect the formation of these coordination polyhedra.

From the relationship $r_{Me^{2+}}/r_{O_w}$ or r_{Me^+}/r_{X^-} (the Ahrens' ionic radii are denoted as r; oxygen from a water molecule as O_w) that determines the coordination number it follows that (i) for the Co²⁺ and Ni²⁺ ions formation of $[Me^{2+}(H_2O)_6]$ octahedra is allowed; and (ii) for the Me^+ ions the coordination environment of X^- ions is ≥ 6 . A hexahalide coordination environment of the Me^+ ions $[Me^+X_6]$ is possible even in cases when coordination numbers larger than 6, e.g., 8, are allowed. It is known that all metal halides Me^+X (except NaX) form $Me^+X \cdot MgX_2 \cdot 6H_2O$ double salts, the Me^+ ions being in a disturbed octahedral coordination of

204

TABLE 7
Tolerance Factors t of the Possible $Me^+X \cdot Ni^{2+}X_2 \cdot 6H_2O$ and $Me^+X \cdot Co^{2+}X_2 \cdot 6H_2O$ Salts

Me^+/X^-	Me^+ Br · Ni ²⁺ Br ₂ · 6H ₂ O	Me^+ I·Ni ²⁺ I ₂ ·6H ₂ O	Me^+ Br · Co ²⁺ Br ₂ · 6H ₂ O	Me^+ I.Co ²⁺ I ₂ .6H ₂ O
$Li(H_2O)^+$	0.955	0.939	0.963	0.946
Na ⁺	1.144	1.111	1.153	1.120
K ⁺	1.020	0.999	1.029	1.007
NH ₄ ⁺	1.005	0.986	1.014	0.993
Rb ⁺	0.979	0.962	0.988	0.969
Cs ⁺	0.939	0.924	0.947	0.932

Note. (Ionic radii used: $r_{Br^-} = 1.96$ Å; $r_{I^-} = 2.20$ Å; $r_{Na^+} = 1.02$ Å; $r_{K^+} = 1.38$ Å; $r_{Rb^+} = 1.52$ Å; $r_{Cs^+} = 1.67$ Å (25); $r_{Li(H_2O)^+} = 1.61$ Å; $r_{NH4^+} = 1.43$ Å (3, 26).

 X^- . This indicates a loosening of the bonds in the octahedra $[Me^+X_6]$ and an increasing of the distance between the ions. As a result the structure may be considered as close packing of $[Me^{2+}(H_2O)_6]$ octahedra along with separate Me^+ and X^- ions.

The Me^{2+} -ligand and Me^+ -ligand chemical interactions in the ternary aqueous solutions compete with one another and exercise mutual effects. They can be interpreted on the basis of the Pearson's concept for "hard" and "soft" Lewis acids (Me^+ and Me^{2+} ions) and bases (X^- ions and H_2O molecules) (18) by using the Klopman's scale of "hardness" and "softness" of cations and anions (19). The "hard-soft" factor determines the type of ligand in the coordination polyhedra (20–23). The Me^+ ions are relatively "soft" and formation of $[Me^+X_6]$ complexes in all halide solutions is possible. The Co²⁺ and Ni²⁺ ions are Lewis acids of intermediate "hardness" and in an aqueous-halide solution they coordinate preferentially to Lewis bases of intermediate "hardness". However, the Lewis bases under discussion exhibit different degrees of "hardness" and create differences in the coordination polyhedra in the halide solutions. $Me^+I \cdot Me^{2+}I_2 \cdot 6H_2O$ salts should be obtained in aqueousiodide solutions because most likely only $[Me^{2+}(H_2O)_6]$ complexes are formed. The "soft" I⁻ ions are not expected to coordinate with Me^{2+} ions. H₂O molecules and Cl^{-} and Br^- ions can coordinate the Co^{2+} and Ni^{2+} ions and, as a result, mixed aqua and halide complexes are observed in aqueous-chloride and bromide solutions. The differences in the geometric stabilities of the predominating mixed aqua-chloride and aqua-bromide complexes lead to crystallization of different double salts— $2Me^+Cl \cdot Me^{2+}Cl_2 \cdot$ $2H_2O$ and $Me^+Cl \cdot Me^{2+}Cl_2 \cdot 2H_2O$ in the chloride systems because of the stable mixed $[Me^{2+}(H_2O)_2Cl_4]$ complexes, and $Me^+Br \cdot Me^{2+}Br_2 \cdot 6H_2O$ in the bromide systems because of the "softer" nature of Br^- ions and the higher geometric stability of the aqua $[Me^{2+}(H_2O)_6]$ complexes as compared to that of the mixed $[Me^{2+}(H_2O)_2Br_4]$ complexes. Our studies on the systems KBr-NiBr₂-H₂O, RbBr-CoBr2-H2O, and NH4Br-NiBr2-H2O (1) at 25°C have proved our prediction about the existence of the salts $Me^+Br \cdot Me^{2+}Br_2 \cdot 6H_2O$. The Cs⁺ ions exercise an additional effect and favor formation of anhydrous and low-hydrate double salts (23). Their peculiarities will be the subject of subsequent studies.

For perovskites to be formed the tolerance factor **t** must range from 0.8 to 1.1 according to Goldschmidt (17); to 1.0 according to Wells (24); and to 1.045–1.061 according to Emons *et al.* (3). When $\mathbf{t} \leq 0.8$, an illmenite type structure is observed. Potassium magnesium carnallite, whose **t** value is 1.061, has a structure differing from that of the perovskite type. All cobalt and nickel salts $Me^+X \cdot Me^{2+}X_2 \cdot 6H_2O$ (Table 7) should have a perovskite type crystal structure. Perovskite type sodium salts $NaX \cdot Me^{2+}X_2 \cdot 6H_2O$ whose tolerance factor **t** is above the upper boundary of existence of the perovskite structures are not expected.

ACKNOWLEDGMENTS

Financial support by the Ministry of Education, Science and Technology, Projects Ch-318 and Ch-402, and an equipment grant from the Alexander von Humboldt Foundation are acknowledged gratefully.

REFERENCES

- 1. S. Tepavitcharova and Chr. Balarew, J. Solid State Chem. 108, 207 (1994).
- 2. J. M. Mercier, C.R. Acad. Sci. 204, 500 (1937).
- H.-H. Emons, P. Brand, T. Pohl, and K. Köhnke, Z. Anorg. Allg. Chem. 563, 180 (1988).
- 4. K. R. Andress and O. Saffe, Z. Kristallogr. 101, 451 (1939).
- 5. X. Solans and M. Font-Altaba, *Acta Crystallogr. Sect. C* 39, 1488 (1983).
- M. Nakayasu, Y. Suzukawa, and W. Kobayashi, *Denki Kagaku* 51, 419 (1983).
- K. Waizumi, H. Masuda, H. Ohtaki, K. A. Burkov, and M. Y. Scripkin, Acta Crystallogr. Sect. C 47, 251 (1991).
- K. Waizumi, H. Masuda, H. Ohtaki, M. Y. Scripkin, and K. A. Burkov, Am. Mineral. 76, 1884 (1991).
- 9. R. E. Marsh, Acta Crystallogr. Sect. C 48, 218 (1992).

- 10. W. Fischer, Neues Jahrb. Mineral. Monatsh. 3, 100 (1973).
- E. O. Schlemper, P. K. Sen Gupta, and T. Zoltai, *Am. Mineral.* 70, 1309 (1985).
- Powder Diffraction File, Set 45. International Centre for Diffraction Data, Newtown Square, 1995.
- 13. Chr. Balarew, V. Karaivanova, and T. Ojkova, Commun. Dept. Chem. Bulg. Acad. Sci. 3, 637 (1970).
- 14. G. Schwarzenbach and H. Flaschka, "Die komplexometrische Titration." pp. 270–277. Izd. Khimiya, Moscow, 1970. [Russian]
- G. Charlot, "Les méthodes de la chimie analytique." Vol. 2, p. 1108. Izd. Khimiya, Moscow, 1969. [Russian]
- 16. F. A. H. Schreinemakers, Z. Phys. Chem. 11, 76 (1893).
- 17. V. M. Goldschmidt, Fortschr. Min. 15, 73 (1931).

- 18. R. G. Pearson, J. Amer. Chem. Soc. 85, 3533 (1963).
- 19. G. Klopman, J. Amer. Chem. Soc. 90, 223 (1968).
- Chr. Balarew, R. Duhlev and D. Spassov, Cryst. Res. Technol. 19, 146 (1984).
- 21. Chr. Balarew and R. Duhlev, J. Solid State Chem. 55, 1 (1984).
- 22. Chr. Balarew, Z. Kristallogr. 181, 35 (1987).
- S. Tepavitcharova, Chr. Balarew, and S. Trendafilova, J. Solid State Chem. 114, 385 (1995).
- 24. A. F. Wells, "Structural Inorganic Chemistry," 5th ed., Vol. 2, p. 303. Izd. Mir, Moscow, 1987. [Russian]
- 25. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
- 26. W. Kleber, "Einführung in die Kristallographie," pp. 168–171. V. Technik, Berlin, 1969.